2,239 research outputs found

    Drawing flowcharts on touch-enabled devices

    Get PDF
    Users benefit from being able to draw flowcharts directly on touch-enabled devices without the hassle of dropdown menus for shape selection or operations to adjust shapes and sizes of drawn objects. This disclosure automatically creates shape elements that match a user’s intention based on the drawing positions, shapes, sizes of strokes, etc. Beautified versions of a user’s drawing strokes are generated and used to replace the strokes. Using the techniques of this disclosure, the touch device intelligently distinguishes between drawing positions, shapes, and handwriting. The techniques distinguish shape from handwriting text and eliminates interruptions to user workflow due to the need to switch between shape mode and text mode

    MillionTreesNYC, Green Infrastructure and Urban Ecology Symposium March 5-6, 2010

    Get PDF
    The MillionTreesNYC Subcommittee on Research and Evaluation was formed shortly following the 2007 launch of MillionTreesNYC, a citywide, public-private initiative with an ambitious goal: to plant and care for one million new trees across New York City’s five boroughs by 2017. Members of this committee are comprised of academics, government researchers and local practitioners with experience in the fields of natural resource management and community development. On March 5-6, 2010, over two hundred researchers and practitioners came together at The New School to showcase scientific innovation in the field of urban forestry and greening. The MillionTreesNYC, Green Infrastructure and Urban Ecology Research Symposium engaged professionals from a broad range of disciplines including sociology, planning, epidemiology, earth sciences, hydrology, forestry, ecology, and design who were uniquely positioned to discuss new ideas

    Design of a AB5-metal hydride cylindrical tank for hydrogen storage

    Get PDF
    Hydrogen storage in metal hydrides presents distinct challenges which encourage the study of effective heat management strategies. Hydrogen absorption in metal hydrides is an exothermic reaction, consequently the generated heat must be removed effectively to achieve the desired performance. This work presents a mathematical model describing the adsorption of hydrogen in La Ni4.7Co0.3 metal hydride as a storage material. Heat and mass transfer effects are modeled in detail. The effect of heat transfer coefficient is also estimated. Besides, a heat transfer fluid for cooling is incorporated to the model. The problem is mathematically formulated presenting a numerical simulation of a design of a cylindrical tank for hydrogen storage. The alloy is studied by using pressure-composition-temperature curves which are carried out at different temperatures. Thermodynamic parameters and hydrogen storage capacity are determined. For isotherm's kinetics, the Jonhson-Mehl-Avrami-Kolomogorov model is used, from which the kinetic constant of the hydriding process is determined.Agencia Nacional de InvestigaciĂłn e InnovaciĂł

    Lead coprecipitation with iron oxyhydroxide nano-particles

    Get PDF
    Pb2+ and Fe3+ coprecipitation was studied with sorption edge measurements, desorption experiments, sorbent aging, High Resolution Transmission and Analytical Electron Microscopy (HR TEM–AEM), and geochemical modeling. Companion adsorption experiments were also conducted for comparison. The macroscopic chemical and near atomic scale HRTEM data supplemented our molecule scale analysis with EXAFS (Kelly et al., 2008). Coprecipitation of Pb2+ with ferric oxyhydroxides occurred at pH 4 and is more efficient than adsorption in removing Pb2+ from aqueous solutions at similar sorbate/sorbent ratios and pH. X-ray Diffraction (XRD) shows peaks of lepidocrocite and two additional broad peaks similar to fine particles of 2-line ferrihydrite (2LFh). HRTEM of the Pb–Fe coprecipitates shows a mixture of 2–6 nm diameter spheres and 8–20 by 200–300 nm needles, both uniformly distributed with Pb2+. Geochemical modeling shows that surface complexation models fit the experimental data of low Pb:Fe ratios when a high site density is used. Desorption experiments show that more Pb2+ was released from loaded sorbents collected from adsorption experiments than from Pb to Fe coprecipitates at dilute EDTA concentrations. Desorbed Pb2+ versus dissolved Fe3+ data show a linear relationship for coprecipitation (CPT) desorption experiments but a parabolic relationship for adsorption (ADS) experiments. Based on these results, we hypothesize that Pb2+ was first adsorbed onto the nanometer-sized, metastable, iron oxyhydrox- ide polymers of 2LFh with domain size of 2–3 nm. As these nano-particles assembled into larger particles, some Pb2+ was trapped in the iron oxyhydroxide structure and re-arranged to form solid solutions. Therefore, the CPT contact method pro- duced more efficient removal of Pb2+ than the adsorption contact method, and Pb2+ bound in CPT solids represent a more stable sequestration of Pb2+ in the environment than Pb2+ adsorbed on iron oxyhydroxide surfaces

    Dynamically Updated Location-Based User Groups for Context-Specific Communication

    Get PDF
    Groups on social networking and messaging platforms enable users to communicate with others in a compartmentalized and targeted manner. However, curating such groups requires manual effort and does not support scenarios in which users wish to communicate with context-specific groups that are dynamic and transient. This disclosure describes techniques that enable dynamically creation and update of user groups based on user location. A messaging backend can enable users to communicate with others in the dynamic location-based groups connected to specific locations. The techniques enable seamless formation and update of context-specific groups without manual effort

    SPIRE Point Source Catalog Explanatory Supplement

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) was launched as one of the scientific instruments on board of the space observatory Herschel. The SPIRE photometer opened up an entirely new window in the Submillimeter domain for large scale mapping, that up to then was very difficult to observe. There are already several catalogs that were produced by individual Herschel science projects. Yet, we estimate that the objects of only a fraction of these maps will ever be systematically extracted and published by the science teams that originally proposed the observations. The SPIRE instrument performed its standard photometric observations in an optically very stable configuration, only moving the telescope across the sky, with variations in its configuration parameters limited to scan speed and sampling rate. This and the scarcity of features in the data that require special processing steps made this dataset very attractive for producing an expert reduced catalog of point sources that is being described in this document. The Catalog was extracted from a total of 6878 unmodified SPIRE scan map observations. The photometry was obtained by a systematic and homogeneous source extraction procedure, followed by a rigorous quality check that emphasized reliability over completeness. Having to exclude regions affected by strong Galactic emission, that pushed the limits of the four source extraction methods that were used, this catalog is aimed primarily at the extragalactic community. The result can serve as a pathfinder for ALMA and other Submillimeter and Far-Infrared facilities. 1,693,718 sources are included in the final catalog, splitting into 950688, 524734, 218296 objects for the 250\mu m, 350\mu m, and 500\mu m bands, respectively. The catalog comes with well characterized environments, reliability, completeness, and accuracies, that single programs typically cannot provide

    Layered Neural Rendering for Retiming People in Video

    Full text link
    We present a method for retiming people in an ordinary, natural video---manipulating and editing the time in which different motions of individuals in the video occur. We can temporally align different motions, change the speed of certain actions (speeding up/slowing down, or entirely "freezing" people), or "erase" selected people from the video altogether. We achieve these effects computationally via a dedicated learning-based layered video representation, where each frame in the video is decomposed into separate RGBA layers, representing the appearance of different people in the video. A key property of our model is that it not only disentangles the direct motions of each person in the input video, but also correlates each person automatically with the scene changes they generate---e.g., shadows, reflections, and motion of loose clothing. The layers can be individually retimed and recombined into a new video, allowing us to achieve realistic, high-quality renderings of retiming effects for real-world videos depicting complex actions and involving multiple individuals, including dancing, trampoline jumping, or group running.Comment: To appear in SIGGRAPH Asia 2020. Project webpage: https://retiming.github.io

    Self-supervised AutoFlow

    Full text link
    Recently, AutoFlow has shown promising results on learning a training set for optical flow, but requires ground truth labels in the target domain to compute its search metric. Observing a strong correlation between the ground truth search metric and self-supervised losses, we introduce self-supervised AutoFlow to handle real-world videos without ground truth labels. Using self-supervised loss as the search metric, our self-supervised AutoFlow performs on par with AutoFlow on Sintel and KITTI where ground truth is available, and performs better on the real-world DAVIS dataset. We further explore using self-supervised AutoFlow in the (semi-)supervised setting and obtain competitive results against the state of the art
    • …
    corecore